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Abstract: 

Power consumption is a critical design constraint in electronics systems. it becomes more 

important in low power systems. An increase in the complexity of system is directly 

proportional to power consumption. Early power estimation is crucial in multicore design 

as it mitigates the risk of redesigning. This research proposes an improved model for power 

macro-modeling, utilizing random values having different statistical properties are 

generated through the Enhanced Whale Optimization Algorithm (EWOA). A multicore 32-

bit MIPS architecture serves as the test system. The model achieves an average percentage 

error of 7.45% in the multicore system. The results show that power estimation model 

provides accurate results. The simulated and estimated power results are compared, and 

result validation is conducted through statistical error analysis. Statistical error analysis 

validates the accuracy of the proposed power macro-model, making it a reliable technique 

for early power estimation in complex systems. 
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1. Introduction: 

Multi-Processor System-on-Chip (MPSoC) technology has undergone remarkable 

advancements, revolutionizing the integration of complex systems onto a single chip, 

augmented with multiple cores. This remarkable achievement has sparked innovations across 

various domains, including smartphones, computers, and smart electronic devices. Analyzing 

power and performance effectively is crucial for minimizing design duration, especially with 

the rising complexity of systems[1]. An increase in the number of cores will increase the power 

consumption. In the field of electronics power performance analysis is an important constraint. 

Power modeling became more important as the size of semiconductors decreased. High-level 

synthesis (HLS) uses high-level descriptions which makes hardware design easy to create. 
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Efficient placements provide optimized area utilization, routing, and power performance[2]. 

Intellectual property (IP) cores in MPSoC are increasing day by day. The use of many IP cores 

reduces system performance. Router connecting IP cores play a very important role in 

performance as it uses 40 % of total power[3]. 

Routing interconnects all chip components according to design rules, significantly impacting 

system area and power consumption. Efficient power macro models for IP-based reduces both 

functional simulations and percentage errors encountered, supported by comprehensive 

evaluations involving IP module simulations and meticulous analysis of experimental 

findings[4]. 

 

2. Literature Review: 

It is essential to explore optimal routing patterns that will provide the best throughput. 

Performance parameters like delay and throughput must be evaluated, and router designs must 

be updated accordingly. Analytical models take less time than simulators and are very helpful 

when the number of cores is high[5]. Integration of memory elements and processors in SoCs 

requires a fast and scalable communication networks[6]. Multiple core stacked system have 

been acclaimed as a highly promising architecture for high-performance microelectronic 

devices in the foreseeable future[7]. 

The impact of fault-tolerant techniques on power consumption is important to avoid limitation 

of  chip power constraints[8]. On-chip thermal management is essential to prevent exceeding 

the Thermal Design Power (TDP), which can trigger protective measures like voltage and 

frequency throttling or core power gating. However, such actions may compromise task 

deadlines and system reliability. Complex system verification is time-consuming, but reusing 

pre-designed blocks, such as IP blocks, minimizes design time and cost. Designers benefit from 

using previously validated components in their system design, reducing associated problems 

with multi-core systems[9].  

A power estimation model for a complete IP-based system offers designers the ability to choose 

an optimal system architecture and optimize power consumption at a higher level of 

abstraction. The dynamic power estimates are validated by comparing them with existing 

power models to assess both speed and accuracy[10]. Pre-designed Intellectual Property (IP) 

blocks, designers can effectively address the challenges associated with multicore designs, 

reducing both time and resources. These models require statistical insights into input patterns, 

to provide accurate power consumption forecasts and thermal considerations.  

GA and krill herd (KH) techniques for energy-efficient task scheduling in heterogeneous multi-

core systems. It utilizes a multi-objective fitness function, considering make spans, processor 

utilization, speedup, and energy consumption, to achieve efficient task scheduling. The results 

affirm that the technique excels at energy-efficient task scheduling within multi-core system 

[10]. The Enhanced Whale Optimization Algorithm with Modified Mutualism (WOAmM) is 

an advanced meta-heuristic method that addresses premature convergence issues. WOAmM 

strikes a balance between exploration and exploitation, making it more effective at thoroughly 

searching the solution space without wasting computational resources. WOAmM outperform 

a variety of algorithms in terms of effectiveness and convergence speed[11]. EWOAmM 
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generated sets of input parameters, covering the full span of input patterns. The results of 

algorithm's effectiveness will be validated from statistical analysis of proposed model. 

 

3. Method of Analysis: 

 Verilog Hardware description language (HDL) is used to implement digital system in Xilinx 

Vivado HLS a High-Level Synthesis (HLS) tool. Then, an optimization technique is 

performed to find power consumption of a system. 

A. Power Estimation 

Power estimation model of IP-based multicore digital design provides output on the basis of 

various input patterns that have special statistical characteristics[12]. The proposed model is 

tested on 32-bit multicore MIPS processor given in figure 1. 

 

  

Figure 1: Multicore MIPS Processor 

First of all, the average power is estimated for single IP block and then power calculated by 

equation (1). 

   𝑃𝑐𝑜𝑟𝑒 = ∑ 𝑃𝐼𝑃𝑎𝑣𝑔
𝑛
𝑖=1               (1) 

         𝑃𝑠𝑦𝑠𝑡𝑒𝑚 is the total power and 𝑃𝐼𝑃𝑎𝑣𝑔  is the average power of single IP block. 

𝑃𝐼𝑝𝑎𝑣𝑔=  𝑓(𝑆𝑃𝑖𝑛,𝑇𝐷𝑖𝑛)                   (2) 

Output macro-model function ƒ is obtained by providing inputs produced by Enhanced Whale 

Optimization Algorithms (EWOA). It uses r primary inputs and binary stream q of length s. 

Average input signal probability (SP) and transition density is defined by following relations. 

 

𝑆𝑃𝑖𝑛 =
∑ ∑ 𝑞𝑖𝑗

𝑠
𝑗=1

𝑟
𝑖=1

𝑟 ∗ 𝑠
                   (3) 

Average input 

𝑇𝐷𝑖𝑛 =
∑ ∑ 𝑞𝑖𝑗⨁𝑞𝑖+1,𝑗

𝑠−1
𝑖=1

𝑟
𝑗=1

𝑟 ∗ (𝑠 − 1)
      (4) 
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In above equations 4 correlation is used. Correlation is helpful when width of signal pattern is 

large. Circular convolution represents that number of times that both of the signals are high. 

B. Power Macro-Model Validation   

Power estimation implemented on Multicore MIPS processor on RTL-level. Input sets are 

generated from optimization algorithm have TD and SP with statistical characteristics. Linear 

regression and statistical analysis will compute the model accuracy. The power macro-

modeling results are compared with simulation results. We will focus on our problem of 

statistical power macro-modelling for multicore MIPS 32-bit architecture. First, the average 

power of all IP blocks estimated individually. Second, the average power for single core is 

estimated. Finally, the all cores are integrated together to construct a multicore system. Then 

the average error for a complete test system is estimated.  

   Average Error is computed by following equation. 

 

εavg =
1

N
∑ {

|Psimulated −   Pestimated|

Psimulated
}                    (5)

N

i=1

 

 

Where Psimulated is the average power obtained from Vivado HLS and Pestimated is the average 

power obtained from our proposed macro model given in equation 1, N is the number of 

simulations for each of the IP block, Single core and Multicore processor[13]. 

C. Whale Optimization Technique 

Whale Optimization Technique is an optimization algorithm that draws inspiration from the 

hunting technique of humpback whales. It leverages this behavior to enhance global 

optimization and search processes in various problem-solving domains[14]. 

 

I. Whale Search for Prey 

    Whales find their target around their location. Following equation shows whale exploration: 

 

𝐷 ̅ = | 𝐶. 𝑃(𝑘) 𝑟𝑛 −  𝑃(˙𝑘)              (6) 

 

𝑃(𝑘 + 1) =  𝑃(𝑘)𝑟𝑛 −  𝐴. 𝐷         (7)  

 

 where P is the position vector of the population, Prn is a vector presenting random population, 

this iteration is denoted by k, rn is for random, D ̅ is denoted as the distance between current 

and random population., A, and C are calculated as follows: 

 

   𝐴 =  2𝑎1 ×  𝑟𝑛 −  𝑎1                (8) 

 

         𝐶 =  2 ×  𝑟𝑛                            (9) 
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Decrease a1 linearly from 2 to 0. 

 

P best is the best location. 

�̅� = | 𝐶. P(k) best –  A. �̅�                  (10) 

    P(k + 1)  =  P(k) best −  A. D         (11) 

II. Bubble-net Attacking Strategy 

The spiral bubble-net predation strategy involves simulating a spiral motion to capture the target 

prey[15]. The whale estimates the distance between itself and the prey, and the location is 

communicated as follows: 

𝐷∗ =  P(k)best −  P(k)                             (12) 

P(k+1) = 𝐷∗𝑒𝑏𝑙. 𝑐𝑜𝑠(2Πl). 𝑃(𝑘)𝑃𝑏𝑒𝑠𝑡  
(𝐾)

            (13) 

       b is constant, l is random value 

l =  (a2 −  1)rn +  1                                     (14) 

III. Enhanced whale optimization algorithm 

 In the Enhanced Whale Optimization Algorithm, evaluating the fitness of the population helps 

identify the best solution globally. In the modified mutualism phase of each iteration, two 

random individuals, Pm and Pn, are selected. The process involves choosing the new value of 

Pi based on the minimum fitness between these two individuals. 

 

Pk+1 i = Pk i + rn(0, 1) × (Pm − MV × BF1 )         (15) 

P k+1 n = Pk n + rn(0, 1) × (Pm − MV × BF2 )       (16) 

Otherwise, 

Pk+1 i = Pk i + rn(0, 1) × (Pn − MV × BF1 )        (17) 

Pk+1 m = Pk m + rn(0, 1) × (Pn − MV × BF2 )       (18) 

 

 where MV is Mean (Pi, Pn) in the first scenario and Mean (Pi, Pm) on the second. BF (1 and 

2) are benefit factors. The fittest will be chosen. This algorithm improves convergence by 

picking the best random individual in the modified mutualism phase and the global best 

individual in the local search phase of the Whale Optimization Algorithm with Mutualism 

(WOAmM). It terminates upon meeting the termination criterion and differs from the original 

WOA. 
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4. MODEL ACCURACY ANALYSIS: 

Enhanced Whale Optimization Algorithm (EWOA) generates discrete random value sets. These 

sets are used as an input for test systems. RTL level simulation performed on Xilinx Vivado 

HLS to get simulated results.  

The complete flow chart of power estimation of multicore is giving on figure 2.  

 

Figure 2: Flow Chart 

 

Table 1. Power and error of IPs 

IP 

block   

Pmax 

(mW) 

Pavg 

(mW) 

Pmin 

(mW) 

εmax 

(%) 

εavg 

(%) 

εmin 

(%) 

IP-1 251 161.71 73.8 14.98 7.82 0.34 

IP-2 9.4 5.29 2 18.70 6.56 0.85 

IP-3 26.6 13.76 2 6.09 3.81 0.53 

IP-4 289.2 236.68 186.9 14.74 6.92 0.052 

IP-5 179 144.41 117.2 19.20 6.95 0.74 

IP-6 215.20 133.48 64.8 28.13 10.18 0.73 

 

Power of each individual IP blocks is mentioned in Table.1 we take Twenty-five random sets 

for the validation of accuracy of our power macro-model. A low-power multicore system has 

been developed and tested at a frequency of 100MHz. Simulations to assess its performance 

were conducted on a Lenovo laptop equipped with an Intel Core i5 processor clocked at 2.42 

GHz, 8 GB of RAM, and a 64-bit Windows 10 operating system. This configuration renders 

the system suitable for a range of low-power commercial applications. 
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Table 2. Power and error of single core MIPS 

System Pmax 

(mW) 

Pavg 

(mW) 

Pmin 

(mW) 

εmax 

(%) 

εavg 

(%) 

εmin 

(%) 

1-CORES 

MIPS 

328 279.47 225.6 15.55 6.09 0.29 

 

Table 3. Power and error of  multicore MIPS 

System Pmax 

(mW) 

Pavg 

(mW) 

Pmin 

(mW) 

εmax 

(%) 

εavg 

(%) 

εmin 

(%) 

4-CORES 

MIPS 

1514 1253.8 869 16.82 7.45 1.15 

      

Power and error of single core of MIPS architecture is given in table 2. This power is obtained 

after joining all IPs together. After that four cores are combine together to get power and error. 

These are homogeneous cores. Power and error of multicore mentioned in table 3. 

 

5. REGRESSION ANALYSIS OF MIPS: 

  Regression model find the relation between the power and input. Results are added in following 

equation. 

𝑃𝑜𝑤𝑒𝑟 =  𝛽0 +  𝛽1 . 𝑇𝐷 +  𝛽2 . 𝑆𝑃                           (19) 

    After adding single IP coefficients power equation will become as following. 

Power MIPS  = 0.27+ 0.039 .TD - 0.0172.SP                 (20) 

After adding MIPS coefficients in power equation. Multicore MIPS equation will become as 

following. 

 

𝑃𝑜𝑤𝑒𝑟 Multicore = 1.23 + 0.134 .TD - 0.108.SP             (21) 

 Results of EWOA are compared with the model which use GA and our work out performed the 

previous model comparison given in the table 4.  

Table 4: Comparison of Proposed model with existing model. 

Sr. 

No. 

Parameter Proposed model  

using EWOA 

Proposed model  

using GA 

1 Number of simulations 250 6250 

2 Simulation time 12.2 374 

 3 Percentage error (%) 7.45 11.42 
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Figure 3: Correlation between simulated and estimated powers for MIPS. 

Graphs in figure 3 shows the correlation between simulated and estimated power of MIPS 

processor. 

 

Figure 4: Correlation between simulated and estimated powers for Multi-Core MIPS. 

Graphs in figure 4 shows the correlation between simulated and estimated power of multicores 

of MIPS processor. Random 25 sets are taken to validate the correlation and accuracy between 

simulated and estimated powers of Processor. 

 

6. Conclusion: 

Early power estimation is very important for electronics system design as it offers a significant 

advantage to designers to adjust their power budgets and improve system reliability, leading to 

reduced turnaround times. 

In this study, a sophisticated statistical macro-modeling technique for estimating power 

consumption using the Enhanced Whale Optimization Algorithm (EWOA) is introduced. This 

methodology involves generating random input patterns that provided to the digital test system 

to compute power usage. The average power consumption for the entire test setup is then 

derived from these computations. 

We conducted experimental assessments comparing our statistical power macro-model with a 

commercial Electronic Design Automation (EDA) power simulator, both running at a 100 MHz 

frequency. To validate the accuracy of our model, we conducted a statistical error analysis, 

demonstrating its precision within an acceptable margin of error and its efficient computational 

time. This modeling approach proves to be suitable for commercial applications involving low-
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power multicore processors.
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